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Abstract

This paper addresses a general method of computing the force transmissibility for complex or statically indeterminate

mechanical system with more than one support. Moreover, the forces transmitted to the ground when one mechanical

system travels across another are calculated. The results of an oscillator travelling over a beam on three simple supports is

addressed in order to illustrate the method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Systems that interact through time-varying interfaces can be found in different situations such as, vehicles
moving over bridges or other flexible foundations, cutters moving in machining problems, car tyres travelling
over rough surfaces, etc. Such class of problem typically include lumped or distributed parameter systems that
interact through moving contacts. Taking vehicles travelling over a bridge as an example, the response
depends on the dynamic properties of the traversing vehicles and of the bridge, the vehicle speed and the
surface roughness. In order to control the bridge structure vibration it is important to be able to accurately
predict the bridge response to the moving vehicle and the resulting responses of the vehicle [1]. In particular,
it is important to predict the transmitted force if the aim of the applied control is to reduce the transmitted
force to the ground. To the knowledge of the authors, there are no studies that aim to find the force
transmitted through bridge supports, probably because of the limited literature available on structural force
transmissibility.

The problem of moving vehicles interacting with highways infrastructures has been examined by many
researchers, mainly driven by concerns over fatigue [2]. In general, three types of problems are reported in the
literature: there are moving force [3], moving mass [4] and moving oscillator [5] problems. A vehicle can be
modelled as a moving force when its inertia is negligible, compared to that of the crossed system, since no
dynamic interaction between the two systems is taken into account. When the inertia cannot be neglected a
moving mass model should be employed. The inclusion of both inertia and interaction forces in the moving
oscillator problem can be found only in recent studies on vehicle–bridge interactions [1].
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The problem of the vibration of solids and structures subjected to moving loads has been broadly discussed
by Frýba in his classical book [5]. The unusual feature of moving load is that they are variable in both time
and space, which make these problems quite difficult to approach. For simple structures with simple boundary
conditions and crossed by moving load the method of expansion in normal modes is suggested. Fourier
transformations are used for the length coordinates and Laplace–Carson transformations for time coordinate.
More complicated structures were instead approached by the generalised method of finite integral
transformations, which leads to results formally identical with the method of expansion in normal modes.
Such methods have the advantage of a comparatively easy solution and the shortcoming of having a
slow convergence in some instances, especially at high speed. Infinite structures are solved considering only
the steady-state vibration of the body as the load moves from minus infinity to plus infinity. This method
is advantageous in that it supplies solution in closed form; however, the solution in many cases is difficult
to attain.

In the past two decades, researcher have developed vehicle models of various complexity to account for the
dynamic properties of the vehicle and accurately predict the amplification of deflections and stresses in the
bridge structure, and more recently a FEM dynamic analysis has been developed by Yang et al. [6].

Tsao et al. [7] addressed a control-oriented formulation of structures interacting through moving contact
points. The example they used for illustration is the dynamic interaction of moving vehicles over bridge
structures. Such systems are time varying due to the moving vehicles. The system representation has been
partitioned into a time invariant part (bridge and vehicle dynamics) and a time-varying part (moving contact
points). Such a systemic approach facilitates a modularised analytical model development, analysis,
simulation, and control system design. Further, such problems may be put in a feedback form in order to
exploit classical numerical and control tools. Due to its modularity such approach seems the most suitable for
solving the force transmissibility problems as well. The force transmitted to the ground, due to the interaction
with a moving structure, can most easily be obtained from force transmissibility matrices, which are much less
widely studied than velocity transmissibility matrices.

The velocity transmissibility is the ratio between the resulting velocity VA of the structure at the point A and
the velocity imposed at the support B. It is defined in many general books on structural dynamics [8]. Ribeiro
et al. [9] generalised the transmissibility concept to structures with several degrees of freedom. They showed
that a velocity transmissibility matrix can be calculated in terms of the mobility matrices of the structure. In
particular, the velocity transmissibility between two sets of point A and B can be obtained by experimentally
exciting the structure at at least as many point as in A, if the mobility matrices between excitation and sets A

and B are known. A surprising consequence of this is that each transmissibility matrix is then not only
characteristic of the structure but also of the way the structure is loaded.

The force transmissibility TF , as defined by Ungar [10] is the ratio between the resulting force FB acting on a
support B of the structure and the force FA acting on a point A of the same structure. As a direct consequence
of the superposition and reciprocity principles, velocity and force transmissibility are shown to be equal
when force and velocities act in the same direction on a linear, time-invariant single-degree-of-freedom (1dof)
system [10].

The aim of this paper is twofold. Firstly, the authors want to generalise the concept to force transmissibility
to multi degree of freedom structures and show the relationship between force and velocity transmissibilities.
Secondly, we propose to use the convolution theorem to predict the force transmitted to the ground from
structures crossed by moving flexible body. The method proposed by Tsao et al. [7] has been then slightly
modified. A numerical example is then presented, in order to illustrate the problem in more detail.

2. Transmissibility frequency functions

In order to define velocity and force transmissibility a general elastic body may be considered. As shown in
Fig. 1, input and output velocities and forces are applied to the body. Two sets of points are chosen on the
body, labelled with subscript A and B. The force transmissibility matrix TF between the output force vector,
�f 0B, and the input force vector, fA, is defined as the matrix that satisfies the following relation:

�f 0B ¼ TF fA (1)
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Fig. 1. Forces applied to a constrained body for force transmissibility definition (a) and velocities of a free body for velocity

transmissibility (b).
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where the apostrophe on the output force is to indicate that such a force vector can be obtained only by
putting constraints at this points, i.e., �f 0B coincides with the force transmitted from the body to the supports.
The transmissibility is defined in the frequency domain, but the explicit dependence on the frequency o will be
dropped for notational convenience.

The force transmissibility can be measured by placing force transducers directly to the blocked structure or
can be obtained numerically from the mobilities of the free-standing body. Taking into account the body in
free-standing condition, the output velocity vector vB is given by

vB ¼ YBAfA þ YBBfB, (2)

where YBA is the cross-mobility matrix between input and output points of the free standing body and YBB is
the point mobility matrix at the output points of the free standing body. The input velocity vector vA can be
similarly expressed as

vA ¼ YAAfA þ YABfB, (3)

where YAB is the cross-mobility matrix between output and input points of the free standing body and YAA is
the point mobility matrix at the input points of the free-standing body.

If constraints are applied to the body, as shown in Fig. 1(a), i.e., vB ¼ 0, the force transmissibility can be
obtained from Eq. (2) as

TF ¼ Y�1BBYBA, (4)

where the mobility matrix YBB has been assumed to be nonsingular. Since Eq. (4) is obtained from free-
standing mobilities, it enables us to deal easily with statically indeterminate structures. The force transmitted
to the supports, due to nonstationary forces, can then be found using the convolution theorem, as explained in
Section 3.

Force transmissibilities are always related to constrained structures and for very large structures it is not
possible to measure the mobility on the free-standing body and only in-situ measurements are possible. It will
be shown that is not possible to obtain the matrix TF from only in-situ measurements. When supports are
placed at the output points, the point mobility matrix of the constrained structure, Y0AA, may be obtained from
Eqs. (1), (3) and (4), i.e.,

Y0AA ¼ YAA � YABY
�1
BBYBA ¼ YAA � YABTF . (5)

The force transmissibility matrix can then be expressed as a function of the point mobility matrix of the
constrained structure, provided that YAB is square and nonsingular:

TF ¼ �Y
�1
ABðY

0
AA � YAAÞ. (6)
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From Eq. (6) it can be inferred that the force transmissibility matrix can be obtained from in-situ
measurements (on the supported structure) only if the mobility matrices YAB and YAA of the free structure are
known already, that is from a numerical model or from experimental measurements.

The relationship between force and velocity transmissibility is known for 1dof systems [10]. Although it is
not directly related to the main topic of this paper, we briefly discuss the relationship between TF and TV . The
velocity transmissibility matrix TV is defined by the following relationship:

vA ¼ TVvB, (7)

where vA is the input velocity vector and vB is the output velocity vector. By definition, the velocity
transmissibility is obtained by freeing the B coordinates, at which is applied the force fB, and measuring the
velocity at points B and A, where no force is applied, hence fA ¼ 0. Using this condition and substituting Eqs.
(2) and (3) in Eq. (7) a new expression of the velocity transmissibility matrix can be found as

TV ¼ YABY
�1
BB (8)

and using Eq. (4) the relationship between force and velocity transmissibilities can be found as

TVYBA ¼ YABTF . (9)

Using the reciprocity principle, i.e., YAB ¼ YT
BA, this becomes

TVY
T
AB ¼ YABTF , (10)

which shows that the force transmissibility between points A and B is equal to the velocity transmissibility
between points B and A, only in a 1dof system, as shown by Ungar [10]. In the case where the sets of input and
output point A and B coincide, the matrices TF , TV and YAB are square and an equivalence relation of
similarity between the force and velocity transmissibility can be found [11]. Such equivalence implies that the
similar matrices represent the same linear transformation.

3. Description of the numerical method

In this section, the problem of a base structure with a moving flexible system is considered in order to find
the forces transmitted to the ground through the supports. The full system is made up of two sub-systems: a
grounded base system, considered as a distributed parameters system modelled by an elemental formulation;
and a moving system, considered for simplicity to be composed by No lumped parameter systems that may be
called oscillators. The two systems are connected to each other at one point for each travelling system. The
two systems can be represented using a feedback control block diagram, and their interaction through moving
contact points can then be represented as shown in Fig. 2.

The force transmissibility functions can be used to obtain the forces on the supports, �f 0BðtÞ, as

�f 0BðtÞ ¼ F�1½TF ðoÞ� � fAðtÞ, (11)
Force
at the

oscillators
Oscillators

disp.
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Modal
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Fig. 2. Feedback diagram of static and moving systems.
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where F�1 is the inverse Fourier transform and fAðtÞ is the force acting on the base structure due to the moving
oscillator. The main problem is then reduced to finding the dynamic force vector fAðtÞ due to the interaction
between base and moving structure. This problem can be addressed by analysing two structures interacting
through moving contact points.

Such an analysis is similar to that proposed by Tsao et al. [7]. Both sub-systems need to be modelled and a
state-space representation has been chosen for this here. The inputs of the base system are the forces applied to
it and the output are the displacement at the nodal points. The travelling load has as input the displacement of
its base and as output the force generated at his bottom. The interaction between two systems may then be
represented as a feedback loop, shown in Fig. 2, where the interacting force and motion at the contact points
are the input and output variables of the two sub-systems. Such an approach facilitates the development,
analysis, simulation and control design of such time-varying system. Moreover, the displacement at the base of
the travelling system can be updated with the road displacement at that point, before it is sent to the moving
sub-system as an input. At the same way the forces at the oscillators can be updated with some external forces
applied to them, as for example the oscillator weights, before they are sent to the base system as input. Since
the contact points are moving some matrix multiplication, explained in detail in Section 4.1, is needed.

The state-space equation of the base system are usually expressed in generalised coordinates. Therefore, the
forces acting on it should be multiplied by the mode shape matrix. The generalised force pnðtÞ applied to the
nth mode is given by

pnðtÞ ¼
XNm

q¼1

cnðzqðtÞÞFqðtÞ, (12)

where t is the time variable, cn is the nth mode shape and zqðtÞ is the coordinate of the qth point on the
structure, that is divided in Nm points. A vector representation of Eqs. (12) is given by

pðtÞ ¼ WTFðtÞ, (13)

where W is the mode shape matrix defined in the Nm points of the base structure.
The base system can be represented with the state-space equation

_qðtÞ ¼ XqðtÞ þ BpðtÞ, (14)

where the state vector q is a vector of modal displacement and velocities. The real displacement w is a vector
given by

wðtÞ ¼ WðfðtÞÞqðtÞ. (15)

Note that the system is time invariant but since the position of the point forces is changing with time, the
generalised forces are changing with time. In other words, each system is linear but the moving contact makes
the global system nonlinear.

The ith vehicle dynamics may be represented by a state-space model with a displacement input vector yi and
the force output vector f i:

_xi ¼ Aixi þ Biyi, ð16Þ

f i ¼ Cixi þDiyi, ð17Þ

where xi is the state vector.
If No travelling systems are crossing the steady system, this is excited by k point forces, due to the ith

moving oscillator located at position ziðtÞ, along the reference axis. The parameters of the travelling system are
also time invariant but the location at which they are connected with the elastic body is varying with time. The
input of one oscillator yi is the displacement of the base body at the contact point zi plus an external
disturbance rðtÞ, which represents the road surface profile

yiðtÞ ¼ wðziðtÞ; tÞ þ rðziÞ, (18)

where wðzi; tÞ can be obtained from Eqs. (15). Eq. (18) supposes the oscillator and the road surface to be in
contact at all times.
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The input of the steady body with respect to the ith oscillator is the output dynamic force of the oscillator
system f iðtÞ plus any external disturbance diðtÞ:

F iðtÞ ¼ f iðtÞ þ diðtÞ. (19)

Since the force f iðtÞ usually does not take into account the vehicle static gravity, this can be taken into account
in the disturbance term considering the relative force at the base of the oscillator: diðtÞ ¼Mig.

4. Application to a 1dof oscillator crossing a 3-hinged beam

4.1. Mathematical model

In order to show the potential of the proposed methodology a practical application is now taken into
account. In particular, the problem of an oscillator travelling over a three-hinged beam, shown in Fig. 3, is
described. The three-hinged beam is a very simple statically indeterminate structure and illustrates the
advantages of this approach. Such a problem can be seen as a very simple model of a train wheel passing over
a railway track.

The two sub-systems, the 1dof oscillator and the three-hinged beam, have been chosen to be modelled in the
state-space. First the oscillator has been modelled as shown in Fig. 4(a), with some viscous damping. The
oscillator can be considered as a 1dof system with imposed displacement at the base. Defining y as the
displacement imposed to the base with respect to the ground reference system, and x as the displacement of
the oscillator mass with respect to the same reference system, the relative displacement z between the base and
the mass may be defined as z ¼ x� y, as shown in Fig. 4(a). The system dynamics may be expressed by

m €xþ c_zþ kz ¼ 0, (20)

where m is the mass of the oscillator and c and k are the viscous damping and the stiffness coefficient of the
oscillator. Choosing the displacement and the velocity of the oscillator mass as state variables, its state-space
description is given by

_x

€x

� �
¼

0 1
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þ
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c

m

2
4

3
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_y

( )
, (21)

where the input of the state-space model are the displacement and velocity of the oscillator base. The output of
the state-space-system must be the force f applied from the oscillator to the base support, i.e.,

f ¼ ½k c�
x

_x

� �
þ ½�k � c�

y

_y

( )
. (22)

The beam has been modelled as an elemental system formed by Nm points between which the two structure
interacts, as shown in Fig. 4(b). It has been described in the state-space domain using the modal
decomposition. As already seen the dynamics of the beam can be expressed as the superposition of Nm 1dof
systems using the modal transformation [12]

w ¼ Wq,
v

Fig. 3. A 1dof oscillator moving across a three-hinged beam.
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Fig. 4. The 1dof oscillator (a) and the beam elemental model (b).
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where w is the real displacement vector, q is the modal vector and W is the modal matrix. The dynamics of the
system may be then expressed in matricial form as

WTMW€qþWTKWq ¼ WTf, (23)

where M is the mass matrix, k is the stiffness matrix and f is vector of the applied forces.
If the mode shapes are mass normalised (that is WTMW ¼ I and WTKW ¼ diagðo2

nÞ), Nm second-order
uncoupled differential equations can be obtained, in the form of

€qn þ o2
i qn ¼ pn for n ¼ 1; 2; . . . ;Nm, (24)

where on is the natural frequency of the nth mode and pn are the modal forces obtained as elements of the
modal force vector p ¼ WTf.

Some damping was then added to the structure in the form of Rayleigh damping, i.e., the damping matrix is
proportional to the mass and stiffness matrices. Such a damping has been used in order to maintain Nm

uncoupled equations, that now are expressed by

€qn þ 2xnon _qn þ o2
nqn ¼ pn for n ¼ 1; 2; . . . ;Nm, (25)

where xn is the nth mode damping ratio, related to the nth mode damping coefficient cn by

xn ¼
cn

2on

. (26)

Eqs. (25) can be expressed in a matrix form as

€qþ 2NX_qþX2q ¼ p, (27)

where N ¼ diagðxnÞ and X ¼ diagðonÞ.
If follows that the system can be expressed in the state-space form as

_q

€q

( )
¼

0 I

�X2
�2NX

� �
q

_q

( )
þ

0

I

� �
p, (28)

where the input of the system are the modal forces p and the state variables are the modal beam displacement q
and velocity _q.

At this point the two systems can be connected as shown in Fig. 2. The new input of the beam system is
given from the combination of the external force d and the dynamic force f, applied at the oscillator base:

p ¼ WT
½spf ðzoÞðf þ dÞ�, (29)

where W is the beam mode shape matrix at fixed locations and spf ðzoÞ is a participation factor vector that takes
into account the fact that the forces d and f are applied in a particular point of the beam, with coordinate zo,
which depends on the position of the oscillator at that time. Since the model is elemental, and not continuous,
the standard modal projection cannot be used. The participation factor vector has been built so to linearly
distribute the oscillator force between the two ends of the element over which the force is applied.
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The input of the oscillator system is given by the sum of the beam displacement at the actual position of the
oscillator zo and the road profile at that point rðzoÞ:

y ¼ spf ðzoÞ
TWqþ rðzoÞ, (30)

while the velocity of the oscillator base is given by the beam velocity and the transport velocity due to the road
profile, i.e.,

_y ¼ sTpfW_qþ
dsTpf

dzo

Wqþ
dr

dzo

 !
v, (31)

where v is the translational velocity of the oscillator over the beam. In the previous equations the participation
vector spf ðzoÞ has been used to obtain the displacement zo by linear interpolation of the displacements of the
two points of the beam element over which the oscillator is travelling. Another advantage of the method is that
any road profile can be considered.

The full system can be solved numerically, as explained in the next subsection, and the force vector fAðtÞ

acting over the three hinged beam can be found. The force at the sth support, f AsðtÞ can be found applying the
convolution theorem as

f AsðtÞ ¼
XNm

q¼1

F�1½TF ;sqðoÞ� � f qðtÞ for s ¼ 1; 2; 3, (32)

where F�1½�� is the inverse Fourier transformation, f qðtÞ is the force applied at the qth mode of the beam and
TF ;skðoÞ is the force transmissibility between the input qth node of the base structure and the support s that
can be obtained from Eq. (4) as an element of the force transmissibility matrix TF .
4.2. Numerical example

The state-space systems described previously have been solved numerically by means of SIMULINK
s. The

dimensions assumed for the beam and the oscillator are shown in Table 1. Initially, two velocities of the
oscillator have been taken into account, 1 and 10ms�1, that is the oscillator takes respectively 500ms and
50ms to traverse the beam length. The natural frequency of the oscillator is f o � 50Hz. The first anti-
symmetrical natural frequency of the beam is f a1 � 376Hz while the first symmetrical resonance is
f s1 � 588Hz. The critical speed is defined as the lowest speed at which the displacement of a beam subjected to
a constant moving load continually increases during the travelling time. The critical speed vcr: of a simple
Table 1

Properties of the system used for the simulation

Description and dimensions Constant Value

Length of the beam (m) L 0.5

Beam broadness (m) B 0.05

Beam thickness (m) h 0.01

Young’s modulus (Pa) E 210� 109

Beam density ðkgm�3Þ r 7800

Beam damping ratio ( ) x 0.02

Oscillator mass (kg) m 1

Oscillator spring stiffness ðNm�1Þ k 0:1� 106

Oscillator damping ratio ( ) x ¼
c

2
ffiffiffiffiffiffiffi
km
p 0.1

Oscillator velocity ðms�1Þ v 1, 10, vcr:

Bump height (m) b 0:5� 10�3
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supported beam under a moving load, is [5]

vcr: ¼
p
L

ffiffiffiffiffiffiffi
EI

rA

s
. (33)

In order to have and idea of the critical velocity of a three supports beam the gap between the first two
supports may be considered, so to obtain vcr: � 188ms�1, which, as expected, is equal to f a1L=2.

In order to find the force transmitted to the support by the travelling oscillator is necessary firstly to find the
transmissibility matrix, given by Eq. (4), and then the inverse Fourier transformation of its elements, as can be
seen in Eq. (32). Fig. 5(a) shows the transmissibility of the beam when a static harmonic excitation force is
applied at the mid point between the first and second supports and when the output force is gathered at the
first support. Fig. 5(b) shows the Green function of the force at the first support when a unity impulse is
applied at the same point.

Fig. 6(a) shows the calculated forces transmitted to the three supports when the oscillator moves across the
beam, with the dimensions and properties listed in Table 1, at a velocity v ¼ 1ms�1. Since the velocity of the
oscillator is very slow, that is v5vcr:, the problem is comparable to a quasi-static problem and the dynamic of
the beam and oscillator can be neglected. As the oscillator arrives on the first support all its weight (10N) is
borne by this. The force on the first support then decreases to be near zero as the weight reaches the third
support. The force on the first support is negative as the oscillator moves between the second and third
support since the deformation of the beam, imposed by the weight of the oscillator, tends to lift the beam from
the first support. The force over the second support starts from zero when the oscillator is over the first
support, reaches the maximum, 10N, at the second support, and becomes zero at the third support. In fact
when the oscillator is over a support all the weight of the oscillator is borne from that support while the other
two supports have to bear only the dynamic forces due to the beam oscillations if there are any.

In order to show the effect of the road profile a bump has been added to the model. Fig. 6(b) shows the
results when the same oscillator travels over the beam with a bump of 0.5mm placed in the middle, between
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the first and second supports. The profile of the bump is shown in Fig. 7. When the oscillator hits the bump the
forces at the first and second supports are increased. After the bump, and before reaching the second support,
the forces at all three supports are affected by the oscillating dynamic forces generated by the beam vibrations.
The largest oscillations have a frequency of 50Hz, and are due to the the oscillator. A smaller oscillation, at
about 560Hz, can be compared to the first symmetrical beam mode f s1 � 588Hz. After the oscillator has
passed the second support the oscillation are damped out by the internal damping of the beam.

Fig. 8(a) shows the forces transmitted to the three supports when the oscillator moves across the beam
at a greater velocity, v ¼ 10ms�1. As the oscillator arrives on the first support its weight excites the beam
vibrations and the forces oscillate at a frequency of about 625Hz. Beside this oscillation, the force shapes are
similar to those obtained with the slower velocity. Fig. 8(b) shows the results when the bump is added to the
beam profile. When the oscillator hits the bump the forces at the first and second supports are increased
significantly. The force at the first support jumps to about 40N while that one at the second support jumps to
about 45N. The force at the third support is negative and reaches a magnitude of �25N. A big increase on
each force can thus be observed when the oscillator travels across the bump at this speed.
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Finally, Fig. 9(a) shows the forces transmitted to the three supports when the oscillator moves across the
beam at the critical velocity v ¼ vcr: ¼ 188ms�1. In this case, even though at the beginning the forces behave as
with the slower speeds, the forces continue to be excited by the oscillator and the forces increase to 40N. At
the end of the beam is possible to see the unloading of the oscillator from the beam. Fig. 9(b) shows the results
when the oscillator moves over the bump. The force impulse due to the road bump is now very large and the
total force at the support reach 500N.
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5. Conclusions

A general method of dealing with an elastic system interacting with a moving dynamic load has been
described. A new more general approach than has previously employed has been proposed to the force
transmissibility and the relationship between force and velocity transmissibility has been investigated. Both the
steady and moving system have been described in the state-space domain. The moving contact points have
been accounted for by connecting the two sub-systems within a time-varying feedback formulation.

The methodology has been tested on the simple case of an oscillator travelling over a three-hinged beam.
The methodology is simple to apply even with common software and permits the rapid calculation of the force
transmitted to the ground under different working conditions.

One potential advantage of this approach is the possibility of using this model to control the force
transmissibility using state-space feedback theory. The numerical simulation also permits the consideration of
a moving body with time-varying speed and any road profile.
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